Розумні технології наступають: на часі доповнена аналітика
До 2020 року бізнес купуватиме нові системи бізнес-аналізу та платформи дослідження даних і машинного навчання саме з метою використання доповненої аналітики.
Принаймні, про це свідчать результати досліджень консалтингової компанії у сфері інформаційних технологій Gartner.
Що ж це таке? Експерти Gartner до засобів доповненої аналітики відносять системи на базі машинного навчання і штучного інтелекту, які повністю змінять принципи підготовки, споживання і поширення аналітичної інформації.
Наприклад, для використання доповненого управління даними використовують системи на основі штучного інтелекту, які забезпечують самоналаштування і адаптацію засобів забезпечення якості даних, управління метаданими та нормативно-довідковою інформацією та інтеграцію даних і СУБД. Такого роду системи дозволяють автоматизувати безліч рутинних задач. Менш технічно підковані користувачі отримали змогу також працювати зі складними даними, а “просунуті” - отримали змогу глибше та якісніше аналізувати їх. Основна відмінність системи в тому, що ті графіки, які раніше були статичними, тепер стають динамічними, і будуть актуалізуватись ледь не щодня.
Експерти прогнозують, що завдяки впровадженню систем машинного навчання і автоматизованого управління рівнями обслуговування, обсяг ручного управління даними до 2022 року зменшиться на 45%. Адже наразі чи не найосновнішою проблемою в галузі аналізу даних є саме необхідність використовувати великі об’єми ручної праці для аналізу, що суттєво стримує розвиток всього ринку.
Ще одним майбутнім трендом стане використання безперервного інтелектуального аналізу (continuous intelligence). До 2022 року більше половини нових ключових бізнес-додатків будуть забезпечені засобами безперервного аналізу, що допомагають приймати правильніші рішення з використанням контекстних даних реального часу. Грубо кажучи, мова йде про проектування інформаційних систем, які будуть рекомендувати яке рішення приймати на основі інтеграції аналітики реального часу в бізнес-процес.
Штучний інтелект обіцяє стати зрозумілішим. Сьогодні багато модулів штучного інтелекту досі є до кінця не розкритими, ми не розуміємо чому штучний інтелект прийняв те чи інше рішення. Планується, що ШІ автоматично генеруватиме обґрунтування результатів зрозумілою мовою, на базі атрибутів, статистики, ознак і показників точності моделі.
Використання графової аналітики. Цей інструмент дозволяє досліджувати відносини між цікавими для дослідника об’єктами - організаціями, людьми, транзакціями. Згідно з прогнозами фахівців Gartner, цей напрямок буде щорічно зростати на 100% аж до 2023 року. Графові сховища дозволяють ефективно моделювати і опитувати розподілені за різними джерелами дані зі складними взаємозв'язками, але через брак фахівців відповідної кваліфікації застосування таких систем поки обмежено.
Збільшиться і використання матриць даних (data fabric). Вони забезпечують легкий доступ і обмін даними в розподіленому інформаційному середовищі. Різнорідні джерела даних в такому середовищі з'єднуються за допомогою універсального керуючого фреймворка.
Штучний інтелект почне нас розуміти. До 2020 року половина всіх аналітичних запитів буде генеруватися за допомогою засобів пошуку та обробки природної мови, в тому числі усними командами і автоматично. Згодом аналітичні інструменти стануть такими ж простими у використанні, як інтерфейси пошуку і спілкування з віртуальним асистентом.
За прогнозом Gartner, до 2022 року 75% нових рішень для кінцевих користувачів на базі штучного інтелекту і машинного навчання буде створюватися за допомогою комерційних інструментів, а не платформ з відкритим кодом. Також планується масове використання технології блокчейн, однак поки вартість її впровадження перевищує можливу користь. Втім вже незабаром все може змінитись.
- Рішенням суду з працівника (водія) стягнуто упущену вигоду Артур Кір’яков вчора о 18:25
- Чому корпоративний стиль – це більше, ніж просто форма Павло Астахов вчора о 12:09
- От трансфера технологий к инновационному инжинирингу Вільям Задорський 18.04.2025 21:33
- Начинается фаза глобального разгона инфляции и масштабных валютных войн Володимир Стус 18.04.2025 18:53
- Омріяна Перемога: яким українці бачать закінчення війни? Дмитро Пульмановський 18.04.2025 18:12
- Баланс між обставинами злочину та розміром застави Богдан Глядик 18.04.2025 17:09
- Люди в центрі змін: як Франковий університет створює сучасне академічне середовище Віталій Кухарський 18.04.2025 16:32
- Інноваційні виклики та турбулентність операційної моделі "Укрзалізниці" в агрологістиці Юрій Щуклін 18.04.2025 14:16
- Тіньова пластична хірургія в Україні: чому це небезпечно і як врегулювати ринок Дмитро Березовський 18.04.2025 11:30
- Модель нової індустріалізації України Денис Корольов 17.04.2025 20:15
- Історія з "хеппі ендом" або як вдалося зберегти ветеранський бізнес на київському вокзалі Галина Янченко 17.04.2025 16:18
- Ілюзія захисту: чим загрожують несертифіковані мотошоломи Оксана Левицька 17.04.2025 15:23
- Як комплаєнс допомагає громадським організаціям зміцнити довіру та уникнути ризиків Акім Кібновський 17.04.2025 15:17
- Топ криптофрендлі юрисдикцій: де найкраще розвивати криптобізнес? Дарина Халатьян 17.04.2025 14:18
- Червоні прапорці контрагентів у бізнесі Сергій Пагер 17.04.2025 08:44
-
Оприлюднено текст меморандуму щодо угоди про копалини
Фінанси 13659
-
Аграрії з Кіровоградщини купують недобудовану лікарню в центрі Києва. Для чого
Бізнес 5522
-
"Якщо заробляємо півтори гривні – щасливі" – власник мережі АЗС
Бізнес 5373
-
FT: Raiffeisen призупинив продаж російської "дочки" через зближення США та РФ
Фінанси 5198
-
Угода про надра не визнаватиме допомогу США боргом України – Качка
Бізнес 4644