Авторські блоги та коментарі до них відображають виключно точку зору їхніх авторів. Редакція ЛІГА.net може не поділяти думку авторів блогів.
16.03.2018 16:42
Как машинное обучение повлияет на роботизацию бизнес-процессов
Что даст в будущем интеграция двух мощных технологий – роботизации бизнес-процессов и машинного обучения? Как когнитивные технологии способны повлиять на RPA?
Те организации, которые серьёзно задумывались над повышением операционной производительности своих бизнес-процессов и снижением операционных расходов, не могли обойти в своих поисках возможность их автоматизации и роботизации. Новая на украинском рынке инновационная технология роботизации бизнес-процессов (Robotic Process Automation, RPA) имеет для этого огромный и несомненный потенциал. Все рутинные, повторяющиеся изо дня в день процессы (сверка баланса, составление отчётности, обработка счетов на оплату, проведение платежей, сбор и ввод данных во внутренние системы и т. п.), которых существует множество практически в каждой организации, могут быть существенно усовершенствованы благодаря этой технологии.
Однако, будем откровенны, при всех преимуществах роботизации бизнес-процессов технология всё-таки имеет свои ограничения в применении. Они вступают в действие, когда речь идёт об осуществлении таких операций и процессов, которые происходят по нетривиальным сценариям и требуют принятия решений или анализа. На данном этапе развития технологии роботизации программный робот способен воспринимать только шаблонные структурированные данные и осуществлять операции, основанные на чётко определённых параметрах. Распознавать неструктурированные или полуструктурированные массивы данных и делать на их основе определённые выводы их ещё нужно «обучать». Поэтому до недавнего времени за роботом и человеком были чётко прописаны назначенные полномочия в рамках выполнения определённых бизнес-процессов, а обработка неструктурированных данных и аналитические задачи были только прерогативой человека.
Однако будет ли эта ситуация оставаться и в дальнейшем неизменной?
Никто из нас не рождается с априори сложившимся мировоззрением и опытом. Человек становится тем, кем себя создаёт в процессе обучения и развития, и этот процесс не прекращается на протяжении всей его жизни.
Похожая идея — способности машин самостоятельно «обучаться» — заложена и в технологию машинного обучения (Machine Learning, ML). Как оказывается, машины также могут учиться на основе собственного опыта, в процессе анализа и обработки больших массивов данных находить в них закономерности и прогнозировать результаты.
Сама идея машинного обучения не нова и уже широко апробирована такими технологическими гигантами, как IBM (Watson, 2011), Google (AlphaGo, 2015). Но только сейчас — с развитием современных технологий и усовершенствованием уже разработанных прототипов — появляются предпосылки для её полноценной технической реализации. Мы даже порой не подозреваем, что машинное обучение уже стало частью нашей нынешней повседневной жизни. На основе наших предыдущих предпочтений специально настроенные алгоритмы подбирают нам ленту новостей в соцсетях и товары в интернет-магазинах, а также осуществляют фильтрацию почтовых сообщений от спама; всё совершеннее становится машинный перевод (например, Google Translate) благодаря доступной ручной функции «улучшить перевод» и т. п. По мнению специалистов, направление машинного обучения станет одним из определяющих в развитии компьютерных технологий в XXI веке.
Поэтому с появлением и активным внедрением машинного обучения осуществление программными роботами исключительно рутинных задач становится далеко не верхней границей их потенциальных возможностей. Применение технологий машинного обучения открывает совершенно новые возможности для роботизации бизнес-процессов и позволяет расширить её функциональность. Благодаря когнитивным технологиям программные роботы становятся всё умнее, в состоянии выполнять ещё более сложные задачи, чем на это способны сегодня, развивать и совершенствовать свои навыки, которые не были в них заложены с самого начала. Поэтому сочетание возможностей этих технологий позволит достичь ещё большей операционной эффективности.
Так где же именно может применяться технология машинного обучения в сфере роботизации бизнес-процессов? Здесь без лишних сомнений можно сказать, что развиваться она будет прежде всего в области совершенствования распознаваемых объектов и данных. Поскольку программный робот может сейчас качественно и без ошибок считывать только печатный текст, следующим шагом для него должно стать качественное распознавание нестандартных шрифтов, неструктурированных данных, рукописного текста, а также возможность распознавать человеческое лицо и естественный язык. Вместе с расширением распознавательных возможностей параллельно будут совершенствоваться возможности роботизации по эффективной обработке бизнес-процессов. А это всё в конечном итоге позволит ещё более их оптимизировать и сократить операционные расходы на их содержание.
Однако всё-таки не следует также забывать и об определённых рисках интеграции машинного обучения и роботизации бизнес-процессов. Если, например, вы корректно запрограммируете робота на выполнение нужных вам действий, используя уже апробированные методы RPA, вы можете быть абсолютно уверены в точности выполнения роботизированного процесса. Однако если вы всё же рассчитываете на более широкие возможности программного робота, но объём предоставленных ему для анализа и «принятия решения» данных будет неполным, некорректным или недостаточно продуманным, то нельзя будет полностью исключить возможность возникновения ошибок. Более того, при таких условиях они будут вполне закономерны. Однако если в вашей команде разработчиков есть люди с соответствующими профессиональными навыками, способные тщательно продумать и корректно применять учебные алгоритмы программирования, то таких рисков, бесспорно, можно избежать.

Поэтому выбор, несомненно, будет оставаться за вами: классическая роботизация бизнес-процессов или классическая роботизация, умноженная на возможности когнитивных технологий машинного обучения. Оба варианта способны открыть несравненно лучшие возможности для оптимизации бизнеса. Однако уже и сегодня совершенно очевидно, что будущее всё-таки будет за последней.
Якщо Ви помітили орфографічну помилку, виділіть її мишею і натисніть Ctrl+Enter.
Останні записи
- Голова правління ОСББ, як головний HR будинку Олена Гаркуша 10:24
- Незаконна передача земель лісового фонду під забудову в Дніпрі Павло Васильєв вчора о 13:42
- Дисциплінарна справа проти суддів: порушення строків судочинства Павло Васильєв 21.02.2025 19:28
- Сертифікат ТПП: чи була форс-мажорна обставина?! Світлана Приймак 21.02.2025 15:31
- Діти з інтернатів після евакуації: повернення в нікуди Юлія Конотопцева 21.02.2025 15:17
- Стійкість, яка допомагає жити: як України долає виклики та підтримує ментальне здоров’я Галина Скіпальська 21.02.2025 14:40
- Нова концепція енергії: чому ми втомлюємося, навіть коли відпочиваємо? Наталія Растегаєва 21.02.2025 13:16
- Нейро-коучинг: як змінити мислення та приймати ефективні рішення Катерина Мілютенко 21.02.2025 02:29
- Виклик для Європи і світу: підсумки Мюнхенської безпекової конференції Ніна Левчук 20.02.2025 17:03
- Відомчий житловий фонд: минуле чи прихована реальність Аліна Москаленко 20.02.2025 15:32
- Практика розгляду справ про хабарництво: ВАКС vs місцеві суди Іван Костюк 20.02.2025 13:30
- Про що Україні говорити з європейськими країнами в плані безпекової компоненти Олександр Калініченко 20.02.2025 11:23
- Гра на виживання України: Трамп за чи проти Путіна?! Дмитро Зенкін 20.02.2025 09:00
- "Закон і порядок" на крайньому заході України Євген Магда 19.02.2025 15:47
- Що чекає на ринок пасажирських автобусних перевезень у 2025 році Альона Векліч 19.02.2025 14:49
Топ за тиждень
Популярне
-
З Фонду національного добробуту РФ зникло понад 100 тонн золота
Фінанси 2902
-
Розуміє Україну, чує Європу. Що потрібно знати про Келлога та його роль у переговорах
1954
-
22 200 гривень: актуальна ставка оренди гектара землі
Бізнес 1767
-
Reuters: РФ може погодитися на використання Україною $300 млрд заморожених активів
Бізнес 1460
-
452 світанки в полоні. Історія захисника Маріуполя, який пройшов російські катівні
1293
Контакти
E-mail: [email protected]